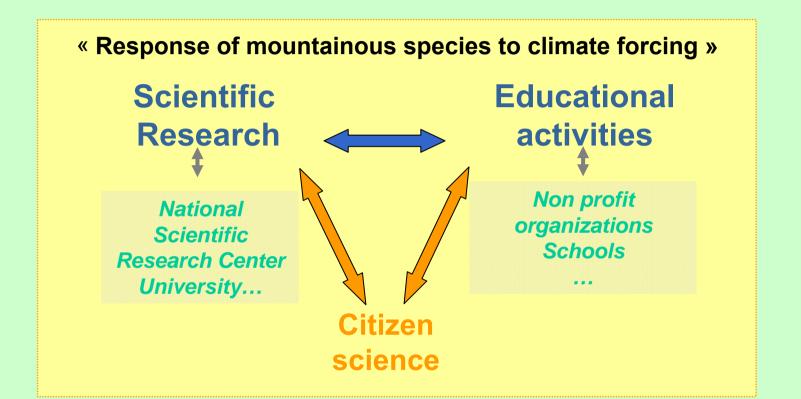
INTERNATIONAL CONFERENCE "Ecological network in the Alps – a response to climate change that will conserve biodiversity?" Berchtesgaden, 15th – 16th October 2009

Monitoring of Phenology to assess the climate change impacts in the Alps: *Phenoclim* and *PhenoAlp*

Alpine Ecosystems Research Center

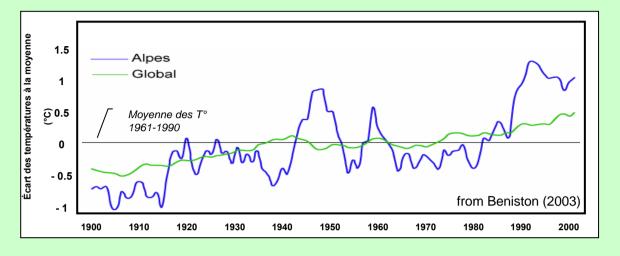
www.crea.hautesavoie.net

Dr. Yann Tracol

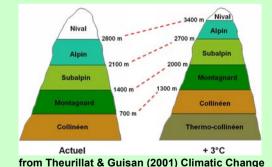

Mod. 1: Effects of Climate change on biodiversity and their consequences for species migration

Alpine Ecosystems Research Center

Centre de Recherches sur les Ecosystèmes d'Altitude



6 employees Members nb : 72


l'Observatoire du Mont-Blanc

Background

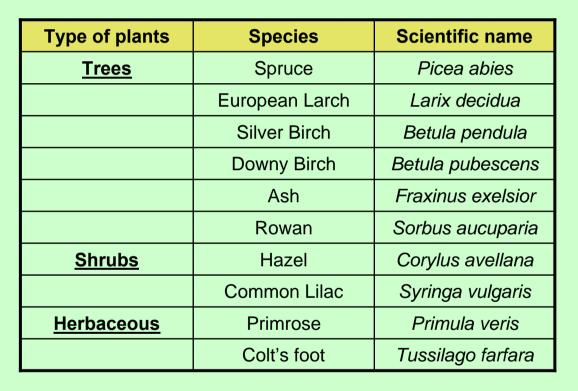
Increase of Air T°, especially during summer and at high elevation zones ↓ rainfall (summer) ↑ rainfall (winter)

- Precocity of the growth season
- Increase in duration of the growth season (9d)
- Migration of species to high elevation and latitude
- Shift of the vegetation belts (Lenoir et al., 2008)
- mismatching of biological cycles: prey-predator
- Loss of biodiversity and increase of invasive species

Phenology – the study of the timing of periodic biological events driven by environmental factor First biotic indicator of climatic changes / A major component of species adaptation to climate variations

A scientific and educational program which invites the public to measure the impact of climate change on phenology of mountain vegetation. This ongoing program was launched in 2004.

<u>Phenopiaf</u> invites you to monitor the arrival (in the Alps) of five species of migratory birds.


EU co-funded Interreg project under the operational program for cross border cooperation France –Italy (Alps-Alcotra).

Aims

 To create a standardized methodology for the monitoring and the study of climatic changes effects on alpine vegetation and animals using a phenological approach
To increase public awareness on the effects of global changes using a participatory science approach

10 species studied :

→ Common in the Alps and easily recognizable by nonspecialists

Present on a large range of altitude

→ Studied as climate change indicators in Europe

3 species monitored per study sites with 3 labelled individuals

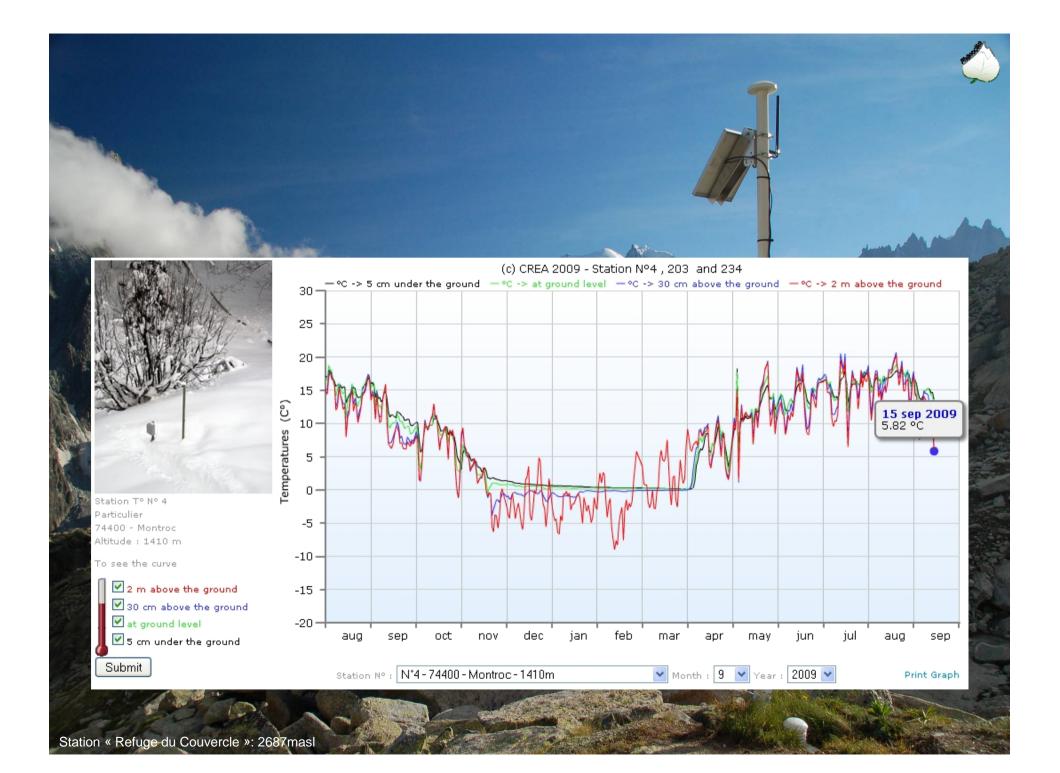
Phenological observations : 5 phenophases from the beginning to the end of the vegetation period

→ Spring :

Budburst

Flowering

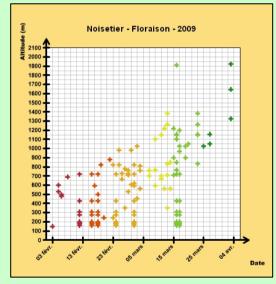
Leaf unfolding



Leaf coloring

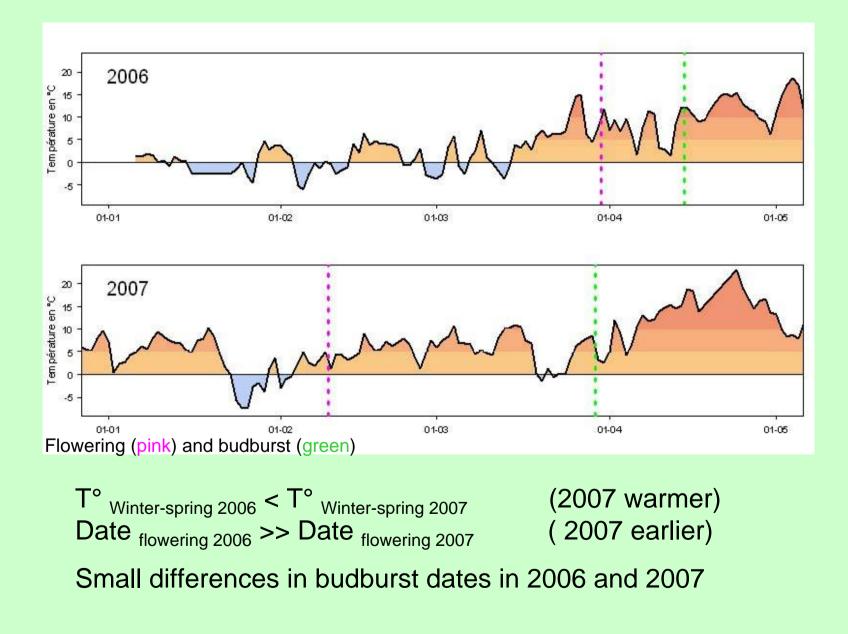
Leaf fall

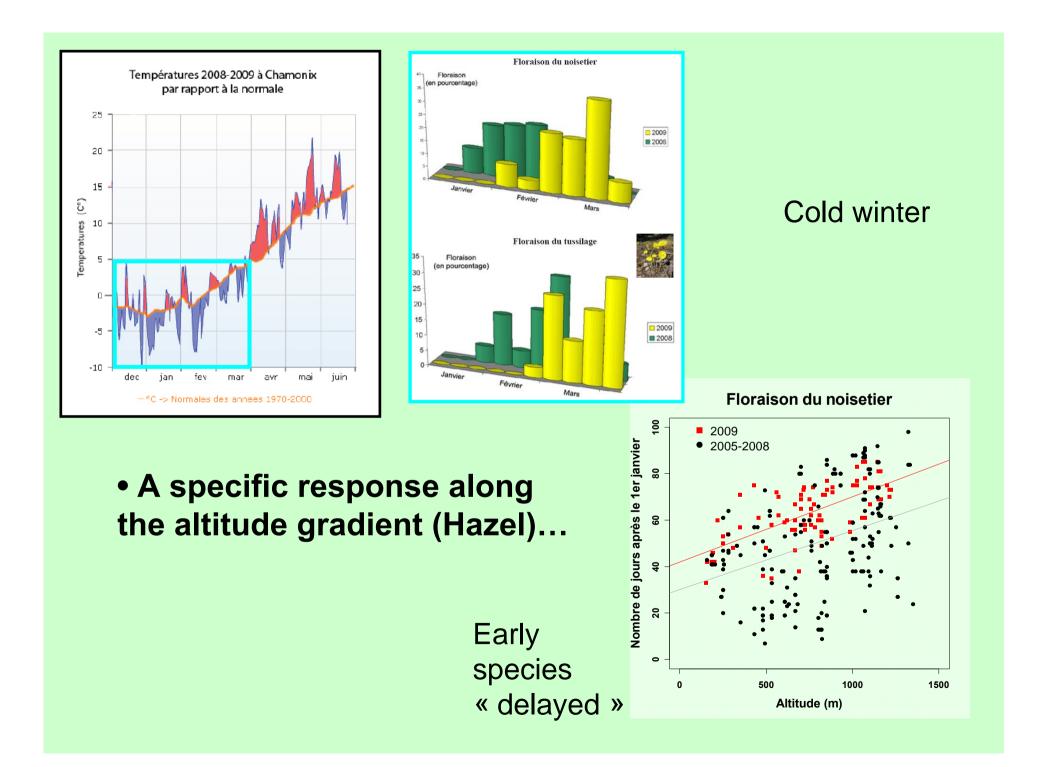
Observations carried out every 8 days

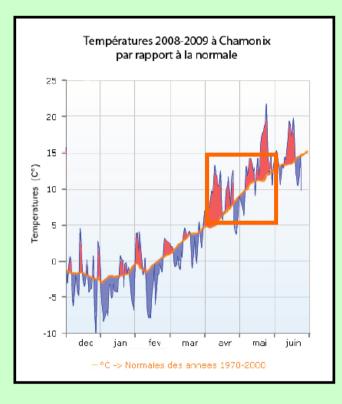


Feedback to the participants (professionals from protected areas, individuals...):

- http://www.crea.hautesavoie.net/phenoclim
- Seminars, training courses, newsletters...

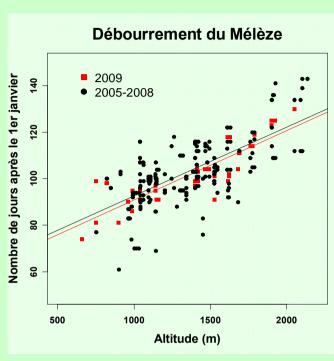


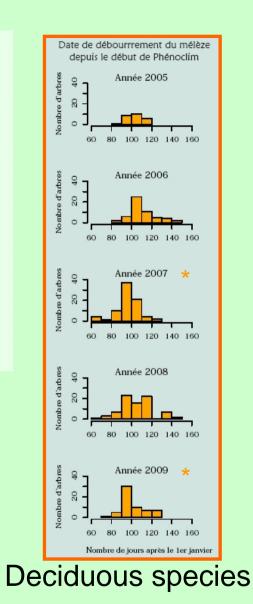



74400 Chamonia Tel 04 50 53 45 16

Retrouvez la lettre de Phénoclim sur le site internet du CREA, rubrique "Phénoclim - La lettre d'info"

Hazel, an early species !!




Cold winter and Warm spring

• A specific response along the altitude gradient...(Larch)

Late species « adapted »

Spring tree phenology in the Alps: effects of air temperature, altitude and local topography submitted to *International Journal of Biometeorology* Maryline Pellerin et al., 2009

Iodel	Parameter	Birch	Ash	Hazel	Spruce	Larch	Model	Parameter	Birch	Ash	Hazel	Spruce	1
	n _{obs}	47	60	52	43	37		n _{obs}	46	57	46	37	1
Altitude	k	3	3	3	3	3	Altitude	k	3	3	3	3	
	AIC_{c}	374.2	468.4	437.7	367.9	334.3		AIC _c	352.7	467.7	360.0	300.9	
	r² (adjusted)	41.9	58.0	34.2	25.9	51.0		r ² (adjusted)	48.6	56.5	55.8	53.1	
Temperature sum	k	3	3	3	3	3	Temperature sum	k	3	3	3	3	
	AIC _c	366.0	482.9	459.7	358.4	330.3		AIC	348.6	470.5	342.4	315.1	
	r² (adjusted)	50.4	47.6	1.75	39.5	55.1		r ² (adjusted)	52.7	54.5	69.1	33.3	
Altitude + Temperature sum	k	4	4	4	4	4	Altitude + Temperature sum	k	4	4	4	4	
	AIC _c	337.8	435.8	436.6	332.4	303.1		AIC _c	326.4	428.1	325.5	280.2	
	r² (adjusted)	72.2	75.1	36.9	66.2	76.2		r2 (adjusted)	71.1	77.5	78.7	73.0	1

Budburst

Unfolding

Akaike information criterion (AIC): low AIC, better model

The phenology is not only controlled by the T^osum. Topographic parameters like elevation, lat/long^o, concavity and exposure control budburst and unfolding.

→ Physiological effects of elevation, phenotypic plasticity or adaptation to local conditions are hypothesis (1) probably because the T°soil and the snow cover limit the onset, (2) to « reduce » frost probabilities

This effect could be observed for others plants or animals ?

The major goals are:

1- the implementation of an observatory network

2- the definition of a common observation strategy and commons protocols

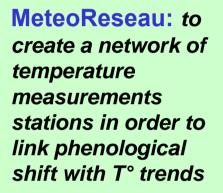
3- the involvement of local community in the observation to increase public awareness on the effects of global changes

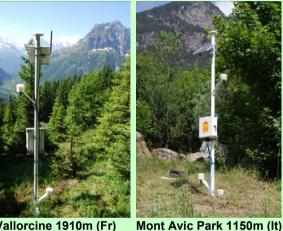
Site (low

PhenoPlantes: *developing climate changes indicators from plant phenology*

- based on Phénoclim protocol regarding forest species

- based on 7 growth life forms regarding alpine grasslands (evergreen, deciduous shrubs, grazed and non grazed poacea, leguminous...)


PhenoZoo: developing climate changes indicators from animal phenology


monitoring of passerines and amphibian phenology (*Rana temporaria*) along an elevation gradient (dates of laying, brood and hatching)
⇒ ponds and nestboxes

InterPheno: to analyse relationships between plants and animals phenology

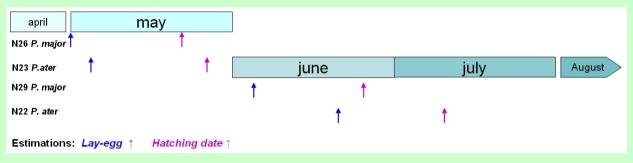
PhenoFlux: to analyse relationships between inter-annual variability of plant phenology and productivity, measuring CO₂ fluxes by Eddy-Covariance technique

Vallorcine 1910m (Fr)

the larch forests and alpine grasslands phenology

- MODIS NDVI time series to retrieve phenological events linked with field measurements - Continuous phenological observation by webcams

Field training day: PhenoPlantes 18-05-09 « Massif des Bauges » Natural Regional Park

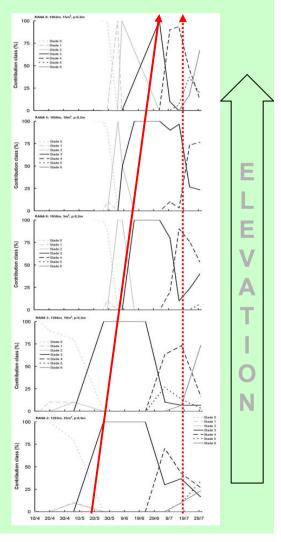

PhenoForm: to create a network of partners in education promoting phenological observations to increase public awareness of CC in the Alps

Field scolar visit (25-06-09), School of Yvoire (74)

PhenoZoo: *first results*

Monitoring of passerines:

- Breeding are observed only along the lower transect
- 4 nest boxes: 2 at the beginning of may and 2 during June
- Incubation period range: 11 and 15 days


Monitoring amphibian phenology (Rana temporaria) along an elevation gradient

- First spawns: one month delay between low and high ponds
- Stage 3 : 11 days delay, Stage 4: 5 days delay
- Total duration: 60 days at high elevation conditions and 90 at low conditions

 \rightarrow as expected, we observe a shorter cycle of development at 1900m than at 1300m.

 \rightarrow to go on the monitoring and extend the study sites distribution

Main conclusions

- Huge efficiency of a network approach to collect data and educate the public : citizens or professionals of protected areas (Phenoclim or PhenoAlp programs)

- Interest to standardize protocols and common models (growth life forms, passerines, amphibians...): a common observation strategy

- Promising start of the PhenoAlp field campaign in France and Italy: adjustment of the protocol and first results

Outlooks

- To develop easier protocols from the PhenoAlp program to involve more and better local communities

- To create more educational tools

- To share experiences with similar projects about animal and vegetal phenology

- <u>To find motivated partners to set-up Phenoclim sites at</u> <u>the Alpine regional scale</u>: Alpine Phenology Observatory Network (APON !!!?!!!?)

- <u>To find financial supports: international, national,</u> regional or local organizations

Centre de Recherches sur les Ecosystèmes d'Altitude

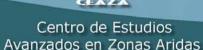
Observatoire du Mont-Blanc 67, lacets du belvédère, 74400 Chamonix Tel: 04 50 53 45 16

www.crea.hautesavoie.net

Thanks

4 - 10 Octubre de 2010 La Serena Chile

Asociación Latinoamericana de Botánica (ALB)



www.botanica-alb.org

Universidad de La Serena

Instituto de Ecología y Biodiversidad

Red Latinoamericana de Botánica